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ABSTRACT 

An algorithm for the determination of heat loadings on a containing wall due to heat sources 

internal to the wall is developed and presented, in parallel with an illustrative example 

involving the calculation of radiation shape factors for the distribution of radiation energy from 

a volumetric heat source located within a simple torus. The six major steps in this algorithm: 

development of a local coordinate system, numerical partitioning of the wall, numerical 

partitioning of the internal heat source, determination of distance formulas, determination of 

incidence angles, and, finally, application of appropriate wall blockage criteria are discussed. 

The illustrative example is developed in parallel with the discussion in that each individual step 

in the algorithm is applied to the example before proceeding to the next step, with the end result 

that poloidal variations in energy deposition for a basic toroidal geometry are determined for a 

variety of toroidal aspect ratios and two different source volumetric heat generation profiles. 

INTRODUCTION 

It is often desired to determine how the irregular distribution of a heat source internal to a 

containing wall affects the variation of heat loadings on the wall itself. Certainly, the loadings 

will not be uniform even in the case of a volumetric heat source with a regular symmetrical 

shape because of irregularities in the wall itself, and with non-symmetries in the internal heat 

generation volume the problem becomes even more complex. It is the purpose of this paper to 

present a systematic procedure to evaluate these wall loading variations which involves the 

following six steps: 

(1) Coordinate System Selection 

 

An appropriate coordinate system must be selected which reflects the primary geometric 

features of the heat source and the containing wall, additional features and complexities 

notwithstanding. For example, a cylindrical coordinate system would probably be used for a 

series of telescoping cylinders or a reactor cooling tower and a rectangular one for a house 

or a building. As will be shown later, a coordinate transformation to the rectangular system 

will need to be performed is this system is not the one initially chosen. 

(2) Wall Partitioning 

 

A numerical partitioning of the wall into a large number of cells which reflect the various 



locations on the wall will need to be accomplished. The wall can be divided into the 

different “parts” (e. g. a rectangular box and a round dome over the box), and then each of 

these parts can be divided into a large number of surface cells. 

 

The rest of the procedure involves calculating “shape factors” for each of these individual 

cells. The “shape factor” represents the power loading (per unit area) for that individual cell 

divided by the average power loading on the wall, which is simply the total heat generated 

by the internal source divided by the total area of the wall. 

(3) Heat Source Partitioning 

 

A three-dimensional partitioning of the heat source into small cells needs to be conducted, 

and the contribution of the heat generated from each of these cells must be summed, for 

every individual wall cell, to obtain the total heat load on the cell. 

 

The reader should note at this point that a computer program performing this will have five 

nested loops (3 nested loops for the source nested within 2 for the wall cells); with even 100 

divisions at each coordinate this involves 10,000,000,000 loops. While this is certainly not 

beyond the capabilities of modern workstations, care must be taken to make the calculations 

performed within each loop as efficient as possible. 

(4) Distance Formulas 

 

Obviously the primary factor determining the contribution of a heat source cell to an 

individual wall cell is the distance to that cell, so formulas must be developed that 

determine these distances from every heat source cell to every possible wall cell. In this 

procedure a conversion from the working coordinate system to the rectangular coordinate 

system is first performed, and then the standard Cartesian distance formulas are used. 

(5) Incidence Angles 

 

Another factor would be the “slant” of the wall cell with respect to incoming energy from a 

cell in the heat generation source. If the direction of energy propagation is normal to the 

wall, contribution to the heat load on the wall will be a maximum; for larger incidence 

angles it will be less. 

 

There may also be cases where the direction of propagation is parallel to the wall surface, or 

even coming in from “behind” the surface. Then the contribution would be zero, as 

discussed in the next paragraph. 

(6) Blockage Criteria 

 

Within the innermost loop, a test needs to be conducted to determine whether the heat 

source cell contributes to a certain individual wall cell at all. There are several reasons why 

it may not; one is if the wall cell is “facing away” from that part of the source, in which the 

situation discussed above prevents a contribution from that source cell. Another possibility 



is that the energy from the source hits another portion of the wall first; hence that section 

“blocks” the energy from being deposited on the section being considered. 

The end result of all this should be a graphical representation of power loadings on all sections 

of the wall. This could either involved absolute power loadings, or shape factors as discussed 

earlier. 

The basic approach of this paper will be to “show” rather than “tell” how this is done by 

applying this procedure to the calculation of radiation shape factors for internal volumes in 

toroidal geometries. When a simple toroidal heat source centered on the toroidal axis is 

bounded by a toroidal wall, the calculations are relatively straightforward, but have not yet been 

done, possibly because practical applications for this are somewhat limited. One place where 

some application was possible was in the conceptual tokamak thermonuclear fusion reactors 

[1, 2] designed in the 1980s (different designs are now being considered more seriously). Since 

these devices had planar walls, some modification would of course need to be made to the 

present analysis. 

Certainly similar problems have been considered and solved. Various modes of heat transfer in 

a cylindrical annulus have been investigated under a variety of different conditions. 

Conduction, convection, and radiation mechanisms between concentric cylinders have been 

investigated and discussed for both participating and non-participating media in the annulus 

itself. Combined convection and radiation heat transfer in a horizontal cylindrical annulus has 

been examined by Kuo, Morales, and Ball [3] who have built on the earlier work of Fernandes 

and Francis [4] and Pandey [5] in analyzing a two-dimensional horizontal annulus containing a 

radiatively participating gray medium. 

In the present case, the cylindrical annulus is simply "bent" or "coiled" so that a toroidal, or 

ring, geometry is approximated. Essentially, this involves an inner ring where volumetric heat 

generation of heat is taking place. Heat loads on the outer ring are then determined, as a 

function of poloidal angle (this poloidal angle corresponds to the sweep of the minor radius of 

the torus, just as a toroidal angle relates to the major radius). The procedure applies because 

unlike the case of the cylindrical annulus, these loads will by no means be uniform over this 

angle, because of toroidal effects. As will be shown, only for very large “aspect ratios” (the 

ratio of the major to minor radii) is the cylindrical condition of uniformity approached. 

For a vacuum or radiatively non-participating medium in the region between the inner ring, 

which constitutes the heat source, and the outer toroidal wall, polodial variations in radiation 

energy deposition are considered and "poloidal radiation shape factors" are developed. As 

discussed earler, a poloidal radiation shape factor is defined as the ratio of the local radiation 

power loading at a specific poloidal angle on the torus to the radiation power loading averaged 

over the entire surface of the torus under the assumption of toroidal symmetry. Hence, a shape 

factor of 1.00 would mean an average loading at that particular angle and a shape factor of 1.25 

would include a local loading 25% above the average. 



COORDINATE SYSTEM SELECTION 

For analysis a perfect torus was chosen with major and minor radii of R and a, respectively. 

Toroidal coordinates were laid out such that the major plane of the torus coincides with the x-y  

plane. For a fixed major toroidal radius R, the radial coordinate r would be the distance from 

the center line of the torus, where this center line would be described by the equations: 

(1)  (x
2
 + y

2
)
1/2

 = R ; z = 0 

The polodial coordinate  was chosen such that  = 0
o
 corresponds to the outer edge of the 

torus, and the toroidal coordinate  was chosen such that the point on the center line  where 

 = 0
o
 lies on the positive x axis. A transformation back to rectangular coordinates, as will be 

necessary to calculate distances and angles, would then be given by: 

      x = (R + r cos( )) cos( ) 

  (2)   y = (R + r cos( )) sin( ) 

      z = r sin( ) 

WALL PARTITIONING 

Toroidal symmetry was assumed, and the toroidal cross-section corresponding to  = 0
o
 was 

arbitrarily chosen for the analysis. For purposes of discussion, the outer surface of the torus, 

described by the equation r = a, is referred to as the "wall," although it is recognized that the 

results would apply to any surface described by this equation. Points on this wall corresponding 

to various polodial angles ranging from 0
o
 to 180

o
 were considered, and variations in the local 

loadings caused by the heat source within the torus were determined and plotted. Symmetry 

about the major plane of the torus was assumed, so that the local loadings at angles w between 

180
o
 and 360

o
 correspond to those at angles 360

o
 - w. Contributions to wall loadings from the 

heat source will also be symmetrical about the torus cross-sectional surface  = 0
o
 so that they 

need only be calculated from one toroidal direction and then multiplied by a factor of 2. 

Note that in most other problems much more complexity would be involved in this step. The 

containing wall, for example, could have several sections all of different geometries. 

HEAT SOURCE PARTITIONING 

For determination of heat loads caused by an isotropic non-attenuating volumetric heat source 

within the torus, a three-dimensional partitioning of the source was carried out, with r ranging 

from 0 to , the cross-sectional radius of the source, and with  ranging from 0
o
 to 180

o
 because 

of the symmetry condition listed above. Note, however, that contributions from the cells are not 

symmetrical about the major plane of the torus (except in the special cases  = 0
o
 and  = 180

o
 



on the wall) so that  for the source must range from 0
o
 to 360

o
. The differential volume for 

each cell will be 

(3)  dV = (dr)(r d )([R + r cos( )] d ) = (rR + r
2
 cos( )) dr d  d  

The total heat source power generation will be 

(4)  P = ∫V G(r) dV = ∫r ∫  ∫  G(r) (rR + r
2
 cos( )) d  d  dr = 4 π

2
 R ∫r r G(r) dr 

where it is recognized that the integral of the second term in the above expression is zero. Note 

that heat source power density is allowed to vary as a function of the radial coordinate. Since 

the total wall surface area is 

(5)  A = (2 a)(2 R) = 4π
2
aR 

the average wall power loading will be 

(6)  pav = 4π
2
R ∫r r G(r) dr / 4π

2
aR = (1/a) ∫r r G(r) dr 

For the case of spatially uniform power generation G(r) = G within the heat source, this reduces 

to 

(7)  pav = G
2
 / 2a 

For a given point on the wall, the contribution to the local power loading by an individual 

differential cell in the heat source is given by 

(8)  dp = G(r) cos( ) dV / 4 D
2
 

where D is the distance between the cell and the point of the wall and  is the angle the inward-

facing normal at the wall point makes with the line joining this point to the cell. This expression 

is then integrated over the entire volume of the heat source to determine the local power 

loading, where it is recognized that all of the variable quantities above are functions of the cell 

location within the heat source. 

DISTANCE FORMULAS AND INCIDENCE ANGLES 

The determinations of D and cos  for each of the cells is relatively straightforward. Given the 

wall point coordinates [xw, yw, zw] and the cell coordinates [xc, yc, zc], the standard Cartesian 

distance formula for D can be applied with rectangular coordinates for a cell with toroidal 

coordinates [r, , ] given by Eq. (2) and those for the wall point given by 



     xw = R + a cos( w) 

    (9)  yw = 0 

     zw = a sin( w) 

cos  can be determined by taking the scalar product of the inward-facing normal vector and the 

distance vector to the cell and dividing by the magnitudes. The result is 

(10)   cos( ) = (1/D) [(xw – xc) cos( w) + (zw – zc) sin( w)] 

BLOCKAGE CRITERIA 

Two additional requirements, however, add complexity to the analysis. The first, which is 

significant for wall poloidal angles greater than 90
o
, is that the source element cannot be 

"behind" the wall. This corresponds to the case cos  < 0 and must be checked for each cell. 

The second requirement is that the source emission cannot be "blocked" by another part of the 

wall. To determine whether or not this is the case, the line joining the wall point and the source 

element is projected into the x-y plane and a focal point is determined. The x and y coordinates 

of this point are those of the point of nearest approach of this line projection to the overall 

origin of the torus. The z coordinate is the height of the joining line as it passes over this point. 

The coordinates of this focal point are thus 

    xf = xwyc
2
 / [(xc - xw)

2
 + yc

2
] 

   (11) yf = xwyc(xw - xc) / [(xc - xw)
2
 + yc

2
] 

    zf = zw + (zc - zw)(xf - xw) / (xc - xw) 

where it is noted that yw = 0 for all points on the wall. Note that at this height zf the inner wall 

of the torus has a major radius (distance to overall origin projected into the x-y plane) of 

(12)  Rw = R – (a
2
 – zf

2
)
1/2

 

Two criteria are then established. If either of these is met, no wall blockage will occur and 

power radiated by the source element will contribute to the wall local power loading. 

The first criterion is that 

(13)  [(xc – xw)
2
 + yc

2
]

1/2
 < [(xf – xw)

2
 + yf

2
]

1/2
 

which corresponds to the condition that the source element is nearer to the wall point than the 

focal point, implying that the joining line reaches the source element before it could possibly 

intersect the inside wall of the torus. 



The second criterion is given by the equation 

(14)  Rw = R – (a
2
 – zf

2
)
1/2

 < (xf
2
 + yf

2
)
1/2

 

This corresponds to the case where the joining line passes outside of the inner surface of the 

torus without intersecting it, and then reaches the source element. 

In this paper, a non-attenuating volumetric heat source is assumed. For a volumetric heat source 

which reabsorbs and thus attenuates some of its own radiation, a third requirement must also be 

met whereby source radiation is not attenuated or blocked by the source itself. Analysis of this 

attenuation will not be described here, but could be done by geometrically determining the 

point of intersection of the joining line with the surface of the heat source and the length of this 

line within the source. Appropriate linear attenuation coefficients would need to be supplied 

based on physical considerations. 

Final determination of local power loadings for a volumetric source can thus be determined by 

summing up the individual contributions of all source elements for which the first two 

requirements listed above are met. 

NUMERICAL IMPLEMENTATION AND RESULTS 

The numerical implementation of this analysis is straightforward and easily programmed. 

Model parameters and the fineness of the mesh can be easily entered, and a special provision 

was made in the program to vary the fineness of the mesh in different toroidal regions so that 

accurate results can be obtained on individual computer workstations. The volumetric results 

presented in this article were based on a partitioning into 18 toroidal regions, with a relatively 

modest 100 X 100 X 100 mesh refinement employed for the five nearest regions and a 50 X 50 

X 50 refinement for the others. The author is presently performing calculations on a Dell 

Precision T5400 workstation using an Absoft Windows-based FORTRAN compiler.  

The author considered cases of volumetric source emission for toroidal aspect ratios (R/a) of 

2.0, 4.0, and 10.0 and radial ratios ( /a) of 0.8 and 0.9. These results are for the sake of brevity 

not presented here, but will be presented at the workshop. It was expected, and confirmed, that 

deviations of the shape factor from 1.0 are larger for small aspect ratios where the differences 

between a toroidal and a cylindrical geometry are more pronounced. For all cases shape factors 

tended to be the highest at w = 0
o
 and monotonically declined as wall polodial angle was 

increased. Apparently, the ability of the outer wall sections to "see" more of the volumetric 

source more than compensated for the tendency of the source to wrap around, and thus become 

nearer, the inner wall surface. The sinusoidal shape of the curves suggested that a curve of the 

form b + c cos( ) could be fitted to the results, and this in fact was done, with fitting 

coefficients b and c for each case listed in Table 1 below: 



Table 1.  Fitting Coefficients for Volumetric Radiation Shape Factors 

 

 ( /a) = 0.8 ( /a) = 0.9 

R/a = 2.0 
b = 0.9806757 

c = 0.0812896 

b = 0.9791952 

c = 0.0885426 

R/a = 4.0 
b = 0.9917716 

c = 0.0733846 

b = 0.9916573 

c = 0.0768915 

R/a = 10.0 
b = 0.9980446 

c = 0.0496696 

b = 0.9981883 

c = 0.0510130 

Note that the constant b, which corresponds to the unweighted average of the shape factors, is 

less than one. This is because the wall areas corresponding to the outer wall angles, where the 

shape factors are the highest, are larger than those corresponding to the inner angles. When the 

factors are weighted according to the wall areas corresponding to each angle, the expected 

weighted average of 1.0 is achieved. 

Results were nearly identical for the same aspect and radial ratios and an inverse parabolic 

power density profile of the form G(r) = G0(1 - (r/ )
2
). Shape factors were slightly less 

pronounced at the inner wall angles for an aspect ratio of 2.0. 

CONCLUSIONS 

A systematic procedure has been developed for the determination of heat loadings on a 

containing wall due to heat sources internal to the wall. This procedure was then applied to a 

toroidal geometry involving a ring-shaped radiative heat source transferring heat through a 

vacuum or radiatively non-participating medium. Radiation shape factors were developed, 

where a shape factor has been defined as the local radiation power loading at a certain point on 

a toroidal surface, resulting from the distribution of radiation energy from a surface or 

volumetric source located within the torus, to the average power loading over the entire surface. 

Poloidal variations in energy deposition are thus analyzed on the assumption of toroidal 

symmetry for several different toroidal aspect ratios, and for isotropic and inverse parabolic 

volumetric radiation sources. It was found that in many cases these variations can be significant 

(between 10% and 20% in a number of cases), and thus warrant consideration in future analyses 

and designs.  
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NOMENCLATURE 

Symbols adopted as part of the standard nomenclature (such as x, y, z, and r) are not included. 

A outer toroidal ("wall") surface area 

a minor radius of torus 

D distance between wall point and heat source element 

e source surface emissive power 

F poloidal shape factor ( = p/pav) 

FR source reabsorption fraction 

P total heat source power generation 

p local wall power loading 

pav average wall power loading 

R major radius of torus 

Rw projected major radius of toroidal inner surface 

r radial coordinate (toroidal coordinates) 

 angle between inward wall normal and line joining wall point to 

 source element 

 poloidal coordinate (toroidal coordinates) 

w wall poloidal coordinate 

 azimuthal angle (surface emission) 



 minor radius of heat source 

 toroidal coordinate (toroidal coordinates) 

 angle to outward normal (surface emission) 

 solid angle (for surface emission) 

Subscripts 

c heat source element (volumetric or surface cell) 

d diffuse emission 

f focal point 

R reabsorption 

w wall point 

y cyclotron emission 

z charged particle emission 


